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a b s t r a c t 

Numerous machine learning (ML) approaches have been proposed for automatic classification of 

Alzheimer’s disease (AD) from brain imaging data. In particular, over 30 papers have proposed to use con- 

volutional neural networks (CNN) for AD classification from anatomical MRI. However, the classification 

performance is difficult to compare across studies due to variations in components such as participant 

selection, image preprocessing or validation procedure. Moreover, these studies are hardly reproducible 

because their frameworks are not publicly accessible and because implementation details are lacking. 

Lastly, some of these papers may report a biased performance due to inadequate or unclear validation 

or model selection procedures. In the present work, we aim to address these limitations through three 

main contributions. First, we performed a systematic literature review. We identified four main types of 

approaches: i) 2D slice-level, ii) 3D patch-level, iii) ROI-based and iv) 3D subject-level CNN. Moreover, we 

found that more than half of the surveyed papers may have suffered from data leakage and thus reported 

biased performance. Our second contribution is the extension of our open-source framework for classi- 

fication of AD using CNN and T1-weighted MRI. The framework comprises previously developed tools to 

automatically convert ADNI, AIBL and OASIS data into the BIDS standard, and a modular set of image 

preprocessing procedures, classification architectures and evaluation procedures dedicated to deep learn- 

ing. Finally, we used this framework to rigorously compare different CNN architectures. The data was 

split into training/validation/test sets at the very beginning and only the training/validation sets were 

used for model selection. To avoid any overfitting, the test sets were left untouched until the end of the 

peer-review process. Overall, the different 3D approaches (3D-subject, 3D-ROI, 3D-patch) achieved simi- 

lar performances while that of the 2D slice approach was lower. Of note, the different CNN approaches 

did not perform better than a SVM with voxel-based features. The different approaches generalized well 

to similar populations but not to datasets with different inclusion criteria or demographical characteris- 

tics. All the code of the framework and the experiments is publicly available: general-purpose tools have 

been integrated into the Clinica software ( www.clinica.run ) and the paper-specific code is available at: 

https://github.com/aramis- lab/AD- DL . 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Alzheimer’s disease (AD), a chronic neurodegenerative disease

causing the death of nerve cells and tissue loss throughout the

brain, usually starts slowly and worsens over time ( McKhann et al.,

1984 ). AD is expected to affect 1 out of 85 people in the world

by the year 2050 ( Brookmeyer et al., 2007 ). The cost of caring for

AD patients is also expected to rise dramatically, thus the need of

individual computer-aided systems for early and accurate AD diag-

nosis. 

Magnetic resonance imaging (MRI) offers the possibility to

study pathological brain changes associated with AD in vivo

( Ewers et al., 2011 ). Over the past decades, neuroimaging data

have been increasingly used to characterize AD by means of ma-

chine learning (ML) methods, offering promising tools for individ-

ualized diagnosis and prognosis ( Falahati et al., 2014 ; Haller et al.,

2011 ; Rathore et al., 2017 ). A large number of studies have pro-

posed to use predefined features (including regional and voxel-

based measurements) obtained from image preprocessing pipelines

in combination with different types of classifiers, such as sup-

port vector machines (SVM) or random forests. Such approach is

often referred to as conventional ML ( LeCun et al., 2015 ). More

recently, deep learning (DL), as a newly emerging ML method-

ology, has made a big leap in the domain of medical imaging

( Bernal et al., 2018 ; Liu et al., 2018a ; Lundervold and Lunder-

vold, 2018 ; Razzak et al., 2018 ; D. Wen et al., 2018a ). As the

most widely used architecture of DL, convolutional neural network

(CNN) has attracted huge attention due to its great success in im-

age classification ( Krizhevsky et al., 2012 ). Contrary to conventional

ML, DL allows the automatic abstraction of low-to-high level latent

feature representations (e.g. lines, dots or edges for low level fea-

tures, and objects or larger shapes for high level features). Thus,

one can hypothesize that DL depends less on image preprocess-

ing and requires less prior on other complex procedures, such as

feature selection, resulting in a more objective and less bias-prone

process ( LeCun et al., 2015 ). 

Very recently, numerous studies have proposed to assist di-

agnosis of AD by means of CNNs ( Aderghal et al., 2018 , 2017a ,

2017b ; Bäckström et al., 2018 ; Basaia et al., 2019 ; Cheng et al.,

2017 ; Cheng and Liu, 2017 ; Farooq et al., 2017 ; Gunawardena et al.,

2017 ; Hon and Khan, 2017 ; HosseiniAsl et al., 2018 ; Islam and

Zhang, 2018 , 2017 ; Korolev et al., 2017 ; Lian et al., 2018 ; Li et al.,

2018 , 2017 ; Lin et al., 2018 ; Liu et al., 2018a ; Liu et al., 2018a ,

2018e ; Qiu et al., 2018 ; Senanayake et al., 2018 ; Shmulev et al.,

2018 ; Taqi et al., 2018 ; Valliani and Soni, 2017 ; Vu et al., 2018 ,

2017 ; Wang et al., 2019 , 2017 ; Wang et al., 2018a ; Wu et al., 2018 ).

However, classification results among these studies are not directly

comparable because they differ in terms of: i) sets of participants;

ii) image preprocessing procedures, iii) cross-validation (CV) pro-

cedure and iv) reported evaluation metrics. It is thus impossible to

determine which approach performs best. The generalization abil-

ity of these approaches also remains unclear. In DL, the use of fully

independent test sets is even more critical than in conventional

ML, because of the very high flexibility with numerous possible

model architecture and training hyperparameter choices. Assessing

generalization to other studies is also critical to ensure that the

characteristics of the considered study have not been overfitted. In
and/or provided data but did not participate in analysis or writing of this report. 

A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

wp-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf 
## Data used in the preparation of this article was obtained from the Aus- 

tralian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by 

the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which 

was made available at the ADNI database ( www.loni.usc.edu/ADNI ). The AIBL re- 

searchers contributed data but did not participate in analysis or writing of this re- 

port. AIBL researchers are listed at www.aibl.csiro.au . 
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revious works, the generalization may be questionable due to in-

dequate validation procedures, the absence of an independent test

et, or a test set chosen from the same study as the training and

alidation sets. 

In our previous studies ( Samper-González et al., 2018 ;

en et al., 2018b ), we have proposed an open source framework

or reproducible evaluation of AD classification using conventional

L methods. The framework comprises: i) tools to automatically

onvert three publicly available datasets into the Brain Imaging

ata Structure (BIDS) format ( Gorgolewski et al., 2016 ) and ii) a

odular set of preprocessing pipelines, feature extraction and clas-

ification methods, together with an evaluation framework, that

rovide a baseline for benchmarking the different components. We

emonstrated the use of this framework on positron emission to-

ography (PET), T1-weighted (T1w) MRI ( Samper-González et al.,

018 ) and diffusion MRI data ( Wen et al., 2018a ). 

This work presents three main contributions. We first reviewed

nd summarized the different studies using CNNs and anatomical

RI for AD classification. In particular, we reviewed their valida-

ion procedures and the possible presence of data leakage. We then

xtended our open-source framework for reproducible evaluation

f AD classification to DL approaches by implementing a modular

et of image preprocessing procedures, classification architectures

nd evaluation procedures dedicated to DL. Finally, we used this

ramework to rigorously assess the performance of different CNN

rchitectures, representative of the literature. We studied the in-

uence of key components on the classification accuracy, we com-

ared the proposed CNNs to a conventional ML approach based on

 linear SVM, and we assessed the generalization ability of the CNN

odels within (training and testing on ADNI) and across datasets

training on ADNI and testing on AIBL or OASIS). 

All the code of the framework and the experiments is publicly

vailable: general-purpose tools have been integrated into Clin-

ca 1 ( Routier et al., 2018 ), an open-source software platform that

e developed to process data from neuroimaging studies, and the

aper-specific code is available at: https://github.com/aramis-lab/

D-DL . The tagged version v.0.0.1 corresponds to the version of the

ode used to obtain the results of the paper. The trained models

re available on Zenodo and their associated DOI is 10.5281/zen-

do.3491003. 

. State of the art 

We performed an online search of publications concerning clas-

ification of AD using neural networks based on anatomical MRI

n PubMed and Scopus, from January 1990 to the 15th of January

019. This resulted in 406 records which were screened according

o their abstract, type and content (more details are provided in

nline supplementary eMethod 1) to retain only those focused on

he classification of AD stages using at least anatomical MRI as in-

ut of a neural network. This resulted in 71 studies. Out of these

1, 32 studies used CNN on image data in an end-to-end frame-

ork, which is the focus of our work. 

Depending on the disease stage that is studied, different clas-

ification experiments can be performed. We present the main

asks considered in the literature in Section 2.1 . We found that a

ubstantial proportion of the studies performed a biased evalua-

ion of results due to the presence of data leakage. These issues

re discussed in Section 2.2 . We then review the 32 studies that

sed end-to-end CNNs on image data, the main focus of this work

 Section 2.3 ). Finally, we briefly describe other studies that were

ept in our bibliography but that are out of our scope ( Section 2.4 ).
1 http://www.clinica.run/ 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://www.loni.usc.edu/ADNI
http://www.aibl.csiro.au
https://github.com/aramis-lab/AD-DL
http://www.clinica.run/
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Table 1. 

Summary of the studies performing classification of AD using CNNs on anatomical MRI. Studies are categorized according to the potential presence of data leakage: 

(A) studies without data leakage; (B) studies with potential data leakage. The number of citations was found with Google Scholar on 16th of January 2020. 

(A) None detected Table 

Study Performance Approach Data leakage Number of 

citations 

AD vs CN sMCI vs pMCI MCI vs CN AD vs MCI Multi-class 

( Aderghal et al., 2017b ) ACC = 0.84 – ACC = 0.65 ACC = 0.67 † – ROI-based None detected 16 

( Aderghal et al., 2018 ) BA = 0.90 – BA = 0.73 BA = 0.83 – ROI-based None detected 9 

( Bäckström et al., 2018 ) ∗ ACC = 0.90 – – – – 3D subject-level None detected 20 

( Cheng et al., 2017 ) ACC = 0.87 – – – – 3D patch-level None detected 12 

( Cheng and Liu, 2017 ) ACC = 0.85 – – – – 3D subject-level None detected 8 

( Islam and Zhang, 2018 ) – – – – ACC = 0.93 1 , † 2D slice-level None detected 23 

( Korolev et al., 2017 ) ACC = 0.80 – – – – 3D subject-level None detected 72 

( Li et al., 2017 ) ACC = 0.88 – – – – 3D subject-level None detected 12 

( Li et al., 2018 ) ACC = 0.90 – ACC = 0.74 † – – 3D patch-level None detected 7 

( Lian et al., 2018 ) ACC = 0.90 ACC = 0.80 † – – – 3D patch-level None detected 30 

(Mingxia Liu et al., 2018a ) ACC = 0.91 ACC = 0.78 † – – – 3D patch-level None detected 59 

(Mingxia Liu et al., 2018b ) ACC = 0.91 – – – – 3D patch-level None detected 26 

( Qiu et al., 2018 ) – – ACC = 0.83 † – – 2D slice-level None detected 8 

( Senanayake et al., 2018 ) ACC = 0.76 – ACC = 0.75 ACC = 0.76 – 3D subject-level None detected 3 

( Shmulev et al., 2018 ) – ACC = 0.62 – – – 3D subject-level None detected 5 

( Valliani and Soni, 2017 ) ACC = 0.81 – – – ACC = 0.57 2 2D slice-level None detected 8 

(B) Data leakage Table 

Study Performance Approach Data leakage 

(type) 

Number of 

citations 

AD vs CN sMCI vs pMCI MCI vs CN AD vs MCI Multi-class 

( Aderghal et al., 2017a ) ACC = 0.91 – ACC = 0.66 ACC = 0.70 – ROI-based Unclear (b,c) 13 

( Basaia et al., 2019 ) BA = 0.99 BA = 0.75 – – – 3D subject-level Unclear (b) 25 

( Hon and Khan, 2017 ) ACC = 0.96 – – – – 2D slice-level Unclear (a,c) 32 

( Hosseini Asl et al., 2018 ) ACC = 0.99 – ACC = 0.94 ACC = 1.00 ACC = 0.95 2 3D subject-level Unclear (a) 107 

( Islam and Zhang, 2017 ) – – – – ACC = 0.74 1 , † 2D slice-level Unclear (b,c) 23 

( Lin et al., 2018 ) ACC = 0.89 ACC = 0.73 – – – ROI-based Unclear (b) 22 

(Manhua Liu et al., 2018c ) ACC = 0.85 ACC = 0.74 – – – 3D patch-level Unclear (d) 39 

( Taqi et al., 2018 ) ACC = 1.00 – – – – 2D slice-level Unclear (b) 16 

( Vu et al., 2017 ) ACC = 0.85 – – – – 3D subject-level Unclear (a) 20 

( Wang et al., 2018b ) ACC = 0.98 – – – – 2D slice-level Unclear (b) 49 

( Bäckström et al., 2018 ) ∗ ACC = 0.99 – – – – 3D subject-level Clear (a) 20 

( Farooq et al., 2017 ) – – – – ACC = 0.99 3 , † 2D slice-level Clear (a,c) 31 

( Gunawardena et al., 2017 ) – – – – ACC = 0.96 2 3D subject-level Clear (a,b) 8 

( Vu et al., 2018 ) ACC = 0.86 – ACC = 0.86 ACC = 0.77 ACC = 0.80 2 3D subject-level Clear (a,c) 8 

( Wang et al., 2017 ) – – ACC = 0.91 – – 2D slice-level Clear (a,c) 11 

( Wang et al., 2019 ) ACC = 0.99 – ACC = 0.98 ACC = 0.94 ACC = 0.97 2 3D subject-level Clear (b) 17 

( Wu et al., 2018 ) – – – – 0.95 4 , † 2D slice-level Clear (a,b) 7 

Types of data leakage: a: wrong dataset split; b: absence of independent test set; c: late split; d: biased transfer learning (see Section 2.2 ). 
∗ In ( Bäckström et al., 2018 ), data leakage was introduced on purpose to study its influence, which explains its presence in both categories. 
† Use of accuracy on a severely imbalanced dataset (one class is less than half of the other), leading to an over-optimistic estimation of performance. 
1 CN vs mild vs moderate vs severe 
2 AD vs MCI vs CN 

3 AD vs LMCI vs EMCI vs CN 

4 sMCI vs pMCI vs CN, ACC: accuracy; BA: balanced accuracy. 
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Designing DL approaches for MRI-based classification of AD re-

uires expertise about DL, MRI processing and AD. Such knowl-

dge might be difficult to acquire for newcomers to the field.

herefore, we present a brief introduction to these topics in on-

ine supplementary eMethod 2 and 3. Readers can also refer to

 Goodfellow et al., 2016 ) about DL and ( Bankman, 2008 ) for MRI

rocessing. 

.1. Main classification tasks 

Even though its clinical relevance is limited, differentiating pa-

ients with AD from cognitively normal subjects (CN), i.e. AD vs

N, is the most widely addressed task: 25 of the 32 studies pre-

enting an end-to-end CNN framework report results with this task

 Table 1 ). Before the development of dementia, patients go through

 phase called mild cognitive impairment (MCI) during which they

ave objective deficits but not severe enough to result in demen-

ia. Identifying the early stage of AD by differentiating MCI patients
rom CN subjects (MCI vs CN) is another task of interest, reported

n nine studies. Patients with MCI may remain stable or subse-

uently progress to AD dementia or to another type of dementia.

istinguishing MCI subjects that will progress to AD (denoted as

MCI) from those who will remain stable (denoted as sMCI) would

llow predicting the group of subjects that will likely develop the

isease. This task (sMCIvspMCI) has been performed in seven stud-

es. Other experiments performed in the 32 studies on which we

ocus include differentiating AD from MCI patients (AD vs MCI) and

ulticlass tasks. 

.2. Main causes of data leakage 

Unbiased evaluation of classification algorithms is critical to as-

ess their potential clinical value. A major source of bias is data

eakage, which refers to the use of test data in any part of the

raining process ( Kriegeskorte et al., 2009 ; Rathore et al., 2017 ).

ata leakage can be difficult to detect for DL approaches as they



4 J. Wen, E. Thibeau-Sutre and M. Diaz-Melo et al. / Medical Image Analysis 63 (2020) 101694 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

t  

c

 

i  

w  

p  

t  

v  

t  

w  

a  

i  

d  

t

 

u  

p  

K  

2  

r  

l  

2  

u  

t  

s  

W  

s  

e  

l  

(  

s  

c  

K  

t  

Z

 

i  

s  

t  

f  

o

2

 

s  

c  

p  

p  

s  

p  

a  

i  

a  

l  

H  

s

 

v  

p  

t  

c  

l  

t  

C  

C  
can be complex and very flexible. We assessed the prevalence of

data leakage among the papers described in Section 2.3 and ana-

lyzed its causes. The articles were labeled into three categories: i)

Clear when data leakage was explicitly witnessed; ii) Unclear when

no sufficient explanation was offered and iii) None detected . The re-

sults are summarized in the last column of Table 1 . They were fur-

ther categorized according to the cause of data leakage. Four main

causes were identified: 

1 Wrong data split. Not splitting the dataset at the subject-level

when defining the training, validation and test sets can result

in data from the same subject to appear in several sets. This

problem can occur when patches or slices are extracted from

a 3D image, or when images of the same subject are available

at multiple time points. ( Bäckström et al., 2018 ) showed that,

using a longitudinal dataset, a biased dataset split (at the im-

age level) can result in an accuracy increase of 8 percent points

compared to an unbiased split (at the subject-level). 

2 Late split. Procedures such as data augmentation, feature selec-

tion or autoencoder (AE) pre-training must never use the test

set and thus be performed after the training/validation/test split

to avoid biasing the results. For example, if data augmenta-

tion is performed before isolating the test data from the train-

ing/validation data, then images generated from the same origi-

nal image may be found in both sets, leading to a problem sim-

ilar to the wrong data split. 

3 Biased transfer learning. Transfer learning can result in data

leakage when the source and target domains overlap, for exam-

ple when a network pre-trained on the AD vs CN task is used

to initialize a network for the MCI vs CN task and that the CN

subjects in the training or validation sets of the source task (AD

vs CN) are also in the test set of the target task (MCI vs CN). 

4 Absence of an independent test set. The test set should only

be used to evaluate the final performance of the classifier, not

to choose the training hyperparameters (e.g. learning rate) of

the model. A separate validation set must be used beforehand

for hyperparameter optimization. 

Note that we did not consider data leakage occurring when de-

signing the network architecture, possibly chosen thanks to succes-

sive evaluations on the test set, as the large majority of the stud-

ies does not explicit this step. All these data leakage causes may

not have the same impact on data performance. For instance, it is

likely that a wrong data split in a longitudinal dataset or at the

slice-level is more damaging than a late split for AE pre-training. 

2.3. Classification of AD with end-to-end CNNs 

This section focuses on CNNs applied to an Euclidean space

(here a 2D or 3D image) in an end-to-end framework (from the in-

put to the classification). A summary of these studies can be found

in Table 1 . The table indicates whether data leakage was poten-

tially present, which could have biased the performance upwards.

We categorized studies according to the type of input of the net-

work: i) 2D slice-level, ii) 3D patch-level, iii) ROI-based and iv) 3D

subject-level. 

2.3.1. 2D slice-level CNN 

Several studies used 2D CNNs with input composed of the set

of 2D slices extracted from the 3D MRI volume ( Farooq et al.,

2017 ; Gunawardena et al., 2017 ; Hon and Khan, 2017 ; Islam and

Zhang, 2018 , 2017 ; Qiu et al., 2018 ; Taqi et al., 2018 ; Valliani and

Soni, 2017 ; Wang et al., 2017 ; Wang et al., 2018a ; Wu et al., 2018 ).

An advantage of this approach is that existing CNNs which had

huge success for natural image classification, e.g. ResNet ( He et al.,

2016 ) and VGGNet ( Simonyan and Zisserman, 2014 ), can be easily
orrowed and used in a transfer learning fashion. Another advan-

age is the increased number of training samples as many slices

an be extracted from a single 3D image. 

In this subsection of the bibliography, we found only one study

n which neither data leakage was detected nor biased metrics

ere used ( Valliani and Soni, 2017 ). They used a single axial slice

er subject (taken in the middle of the 3D volume) to compare

he ResNet ( He et al., 2016 ) to an original CNN with only one con-

olutional layer and two fully connected (FC) layers. They studied

he impact of both transfer learning, by initializing their networks

ith models trained on ImageNet, and data augmentation with

ffine transformations. They conclude that the ResNet architecture

s more efficient than their baseline CNN and that pre-training and

ata augmentation improve the accuracy of the ResNet architec-

ure. 

In all other studies, we detected a problem in the eval-

ation: either data leakage was present (or at least sus-

ected) ( Farooq et al., 2017 ; Gunawardena et al., 2017 ; Hon and

han, 2017 ; Islam and Zhang, 2017 ; Taqi et al., 2018 ; Wang et al.,

017 ; Wang et al., 2018a ; Wu et al., 2018 ) or an imbalanced met-

ic was computed on a severely imbalanced dataset (one class is

ess than half of the other) ( Islam and Zhang, 2018 ; Qiu et al.,

018 ). Theses studies differ in terms of slice selection: i) one study

sed all slices of a given plane (except the very first and last ones

hat are not informative) ( Farooq et al., 2017 ); ii) other studies

elected several slices using an automatic ( Hon and Khan, 2017 ;

u et al., 2018 ) or manual criterion ( Qiu et al., 2018 ); iii) one

tudy used only one slice ( Wang et al., 2018a ). Working with sev-

ral slices implies to fuse the classifications obtained at the slice-

evel to obtain a classification at the subject-level. Only one study

 Qiu et al., 2018 ) explained how they performed this fusion. Other

tudies did not implement fusion and reported the slice-level ac-

uracy ( Farooq et al., 2017 ; Gunawardena et al., 2017 ; Hon and

han, 2017 ; Wang et al., 2017 ; Wu et al., 2018 ) or it is unclear if

he accuracy was computed at the slice- or subject-level ( Islam and

hang, 2018 , 2017 ; Taqi et al., 2018 ). 

The main limitation of the 2D slice-level approach is that MRI

s 3-dimensional, whereas the 2D convolutional filters analyze all

lices of a subject independently. Moreover, there are many ways

o select slices that are used as input (as all of them may not be in-

ormative), and slice-level accuracy and subject-level accuracy are

ften confused. 

.3.2. 3D patch-level CNN 

To compensate for the absence of 3D information in the 2D

lice-level approach, some studies focused on the 3D patch-level

lassification (see Table 1 ). In these frameworks, the input is com-

osed of a set of 3D patches extracted from an image. In princi-

le, this could result, as in the 2D slice-level approach, in a larger

ample size, since the number of samples would be the number of

atches (and not the number of subjects). However, this potential

dvantage is not used in the surveyed papers because they trained

ndependent CNNs for each patch. Additional advantages of patches

re the lower memory usage, which may be useful when one has

imited resources, and the lower number of parameters to learn.

owever, this last advantage is present only when one uses the

ame network for all patches. 

Two studies ( Cheng et al., 2017 ; Liu et al., 2018d ) used

ery large patches. Specifically, they extracted 27 overlapping 3D

atches of size 50 × 41 × 40 voxels covering the whole volume of

he MR image (100 × 81 × 80 voxels). They individually trained 27

onvolutional networks (one per patch) comprising four convo-

utional layers and two FC layers. Then, an ensemble CNN was

rained to provide a decision at the subject level. This ensemble

NN is partly initialized with the weights of the previously trained

NNs. ( Liu et al., 2018a ) used exactly the same architecture as
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2 In their original paper, this anatomical structure was called the “hippopotamus”

(sic). 
 Cheng et al., 2017 ) and enriched it with a fusion of PET and MRI

nputs. They also gave the results obtained using the MRI modality

nly, which is the result reported in Table 1 . 

( Li et al., 2018 ) used smaller patches (32 × 32 × 32). By decreas-

ng the size of the patches, they had to take into account a pos-

ible discrepancy between patches taken at the same coordinates

or different subjects. To avoid this dissimilarity between subjects

ithout performing a non-linear registration, they clustered their

atches using k-means. Then they trained one CNN per cluster, and

ssembled the features obtained at the cluster-level in a similar

ay to ( Cheng et al., 2017 ; Liu et al., 2018a ). 

The following three studies ( Lian et al., 2018 ; Liu et al., 2018a ,

018e ) used even smaller patches (19 × 19 × 19). Only a subset of

atches, chosen based on anatomical landmarks, are used. These

natomical landmarks are found in a supervised manner via a

roup comparison between AD and CN subjects. This method re-

uires a non-linear registration to build the correspondence be-

ween voxels of different subjects. Similarly to other studies, in

 Liu et al., 2018a ), one CNN is pre-trained for each patch and the

utputs are fused to obtain the diagnosis of a subject. The ap-

roach of ( Liu et al., 2018a ) is slightly different as they consider

hat a patch cannot be labelled with a diagnosis, hence they do

ot train one CNN per patch individually before ensemble learning,

ut train the ensemble network from scratch. Finally, ( Lian et al.,

018 ) proposed a weakly-supervised guidance: the loss of the net-

ork is based on the final classification scores at the subject-level

s well as the intermediate classification done on the patch- and

egion-level. 

There are far less data leakage problems in this section, with

nly a doubt about the validity of the transfer learning between

he AD vs CN and MCI vs CN tasks in ( Liu et al., 2018a ) because of a

ack of explanations. Nevertheless, this has no impact on the result

f the AD vs CN task for which we did not detect any problem of

ata leakage. 

As for the 2D-slice level approaches, in which a selection of

lices must be made, one must choose the size and stride of

atches. The choice of these hyperparameters will depend on the

RI preprocessing (e.g. a non-linear registration is likely needed

or smaller patches). Nevertheless, note that the impact of these

yperparameters has been studied in the pre-cited studies (which

as not been done for the 2D slice-level approaches). The main

rawback of these approaches is the complexity of the framework:

ne network is trained for each patch position and these networks

re successively fused and retrained at different levels of represen-

ation (region-level, subject-level). 

.3.3. ROI-based CNN 

3D patch-level methods use the whole MRI by slicing it into

maller inputs. However, most of these patches are not informa-

ive as they contain parts of the brain that are not affected by

he disease. Methods based on regions of interest (ROI) overcome

his issue by focusing on regions which are known to be infor-

ative. In this way, the complexity of the framework can be de-

reased as fewer inputs are used to train the networks.In all the

ollowing studies, the ROI chosen was the hippocampus, which

s well-known to be affected early in AD ( Dickerson et al., 2001 ;

alvatore et al., 2015 ; Schuff et al., 2009 ). Studies differ by the def-

nition of the hippocampal ROI. 

( Aderghal et al., 2018 , 2017a , 2017b ) performed a linear regis-

ration and defined a 3D bounding box comprising all the voxels of

he hippocampus according to a segmentation with the AAL atlas.

hese three studies used a “2D + ε approach” with patches made

f three neighbouring 2D slices in the hippocampus. As they use

nly one or three patches per patient, they do not cover the en-

ire region. The first study ( Aderghal et al., 2017b ) only uses the

agittal view and classifies one patch per patient. The architecture
f the CNN is made of two convolutional layers associated with

ax pooling, and one FC layer. In the second study ( Aderghal et al.,

017a ), all the views (sagittal, coronal and axial) are used to gen-

rate patches. Then, three patches are generated per subject, and

hree networks are trained for each view and then fused. The last

tudy from the same author ( Aderghal et al., 2018 ) focuses on the

ransfer learning from anatomical MRI to diffusion MRI, which is

ut of our scope. 

In ( Lin et al., 2018 ) a non-linear registration was performed to

btain a voxel correspondence between the subjects, and the vox-

ls belonging to the hippocampus 2 were identified after a segmen-

ation implemented with MALP-EM ( Ledig et al., 2015 ). 151 patches

ere extracted per image with sampling positions fixed during the

xperiments. Each of them was made of the concatenation of three

D slices along the three possible planes (sagittal, coronal and ax-

al) originated at one voxel belonging to the hippocampus. 

The main drawback of this methodology is that it studies only

ne (or a few) regions while AD alterations span over multiple

rain areas. However, it may reduce the risk of overfitting be-

ause the inputs are smaller ( ∼30 0 0 voxels in our bibliography)

nd fewer than in methods allowing patch combinations. 

.3.4. 3D subject-level CNN 

Recently, with the boost of high-performance computing re-

ources, more studies used a 3D subject-level approach (see

able 1 ). In this approach, the whole MRI is used at once and the

lassification is performed at the subject level. The advantage is

hat the spatial information is fully integrated. 

Some studies readapted two classical architectures, ResNet

 He et al., 2016 ) and VGGNet ( Simonyan and Zisserman, 2014 ),

o fit the whole MRI ( Korolev et al., 2017 ; Shmulev et al., 2018 ).

n both cases, the classification accuracies obtained with VGGNet

nd ResNet are equivalent, and their best accuracies are lower

han that of other 3D subject-level approaches. Another study

 Senanayake et al., 2018 ) used a set of complex modules from clas-

ical architectures such as ResNet and DenseNet (dilated convolu-

ions, dense blocks and residual blocks), also without success. 

Other studies defined original architectures ( Bäckström et al.,

018 ; Basaia et al., 2019 ; Cheng and Liu, 2017 ; HosseiniAsl et al.,

018 ; Li et al., 2017 ; Vu et al., 2018 , 2017 ; Wang et al., 2019 ).

e detected data leakage in all studies except ( Bäckström et al.,

018 ; Cheng and Liu, 2017 ; Li et al., 2017 ). ( Bäckström et al.,

018 ; Cheng and Liu, 2017 ) had a similar approach by train-

ng one network from scratch on augmented data. One cru-

ial difference between these two studies is the preprocessing

tep: ( Bäckström et al., 2018 ) used non-linear registration whereas

 Cheng and Liu, 2017 ) performed no registration. ( Li et al., 2017 )

roposed a more complex framework fusing the results of a CNN

nd three networks pre-trained with an AE. 

For the other studies using original architectures, we suspect

ata leakage ( Basaia et al., 2019 ; HosseiniAsl et al., 2018 ; Vu et al.,

018 , 2017 ; Wang et al., 2019 ), hence their performance cannot

e fairly compared to the previous ones. However we noted that

 HosseiniAsl et al., 2018 ; Vu et al., 2018 , 2017 ) studied the impact

f pre-training with an AE, and concluded that it improved their

esults (accuracy increased from 5 to 10 percent points). 

In the 3D-subject level approach, the number of samples is

mall compared to the number of parameters to optimize. Indeed,

here is one sample per subject, typically a few hundreds to thou-

ands of subjects in a dataset, thus increasing the risk of overfit-

ing. 
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2.3.5. Conclusion 

A high number of these 32 studies presented a biased perfor-

mance because of data leakage: 10 were labeled as Unclear be-

cause of lack of explanations, and 6 as Clear (we do not count

here the study of Backstrom et al ( Bäckström et al., 2018 ) as

data leakage was done deliberately to study its impact). This

means that about 50% of the surveyed studies could report biased

results. 

In addition to that problem, most studies are not comparable

because the datasets used, subjects selected among them and pre-

processing performed are different. Furthermore, these studies of-

ten do not motivate the choice of their architecture or hyperpa-

rameters. It might be that many of them have been tried (but not

reported) thereby resulting in a biased performance on the test set.

Finally, the code and key implementation details (such as hyperpa-

rameter values) are often not available, making them difficult if not

impossible to reproduce. 

2.4. Other deep learning approaches for AD classification 

Several studies found during our literature search are out of our

scope: either CNNs were not used in an end-to-end manner or not

applied to images, other network architectures were implemented,

or the approach required longitudinal or multimodal data. 

In several studies, the CNN is used as a feature extractor only

and the classification is performed using either a random forest

( Chaddad et al., 2018 ), SVM with linear or polynomial kernels and

logistic regression ( Çitak-ER et al., 2017 ), extreme ML ( Lin et al.,

2018 ), SVM with different kernels ( Shen et al., 2018 ), or logistic re-

gression and XGBoost (decision trees) ( Shmulev et al., 2018 ). Only

Shmulev et al. compared the results obtained with the CNN clas-

sification with those obtained with other classifiers based on fea-

tures extracted by the CNN, and concluded that the latter is more

efficient. Instead of being directly applied to the image, CNNs can

be applied to pre-extracted features. This is the case of ( Suk et al.,

2017 ) where the CNN is applied to the outputs of several regres-

sion models performed between MRI-based features and clinical

scores with different hyperparameters. CNNs can also be applied

to non-Euclidean spaces, such as graphs of patients ( Parisot et al.,

2018 ) or the cortical surface ( Mostapha et al., 2018 ). 

Other architectures have been applied to anatomical MRI. Many

studies used a variant of the multilayer perceptron composed

of stacked FC layers ( Amoroso et al., 2018 ; Baskar et al., 2018 ;

Cárdenas-Peña et al., 2017 , 2016 ; Dolph et al., 2017 ; Gorji and Had-

dadnia, 2015 ; Gutiérrez-Becker and Wachinger, 2018 ; Jha et al.,

2017 ; Lu et al., 2018 ; Mahanand et al., 2012 ; Maitra and Chat-

terjee, 2006 ; Ning et al., 2018 ; Raut and Dalal, 2017 ; Shams-

Baboli and Ezoji, 2017 ; Zhang et al., 2018 ; Zhou et al., 2019 ) or of a

probabilistic neural network ( Duraisamy et al., 2019 ; Mathew et al.,

2018 ). In other studies, high-level representations of the features

are extracted using both unsupervised (deep Boltzmann machine

( Suk et al., 2014 ) and AE ( Suk et al., 2015 )) and supervised struc-

tures (deep polynomial networks ( Shi et al., 2018 )), and an SVM

is used for classification. Non-CNN architectures require exten-

sive preprocessing as they have to be applied to imaging features

such as cortical thickness, shapes, or texture, and regional features.

Moreover, feature selection or embedding is also often required

( Amoroso et al., 2018 ; Dolph et al., 2017 ; Jha et al., 2017 ; Lu et al.,

2018 ; Mahanand et al., 2012 ; Mathew et al., 2018 ; Suk et al., 2015 ,

2014 ) to further reduce dimensionality. 

DL-based classification approaches are not limited to cross-

sectional anatomical MRI. Longitudinal studies exploit information

extracted from several time points of the same subject. A spe-

cific structure, the recurrent neural network, has been used to

study the temporal correlation between images ( Bhagwat et al.,

2018 ; Cui et al., 2018 ; Wang et al., 2018a ). Several studies ex-
loit multi-modal data ( Aderghal et al., 2018 ; Cheng and Liu, 2017 ;

smaeilzadeh et al., 2018 ; Li et al., 2015 ; Liu et al., 2016 , 2015 ;

iu et al., 2018a ; Liu et al., 2018a ; Lu et al., 2018 ; Ning et al.,

018 ; Ortiz et al., 2016 ; Qiu et al., 2018 ; Raut and Dalal, 2017 ;

enanayake et al., 2018 ; Shi et al., 2018 ; Shmulev et al., 2018 ;

pasov et al., 2018 ; Suk et al., 2014 ; Thung et al., 2017 ; Vu et al.,

018 , 2017 ; Zhou et al., 2019 , 2017 ), such as multiple imaging

odalities (PET and diffusion tensor imaging), demographic data,

enetics, clinical scores, or cerebrospinal fluid biomarkers. Note

hat multimodal studies that also reported results with MRI only

 Aderghal et al., 2018 ; Cheng and Liu, 2017 ; Liu et al., 2018a ;

iu et al., 2018 ; Senanayake et al., 2018 ; Shmulev et al., 2018 ;

u et al., 2018 , 2017 ) are displayed in Table 1 . Exploiting multiple

ime-points and/or modalities is expected to improve the classifi-

ation performance. However, these studies can be limited by the

mall number of subjects having all the required time points and

odalities. 

. Materials 

The data used in our study are from three public datasets:

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, the

ustralian Imaging, Biomarkers and Lifestyle (AIBL) study and the

pen Access Series of Imaging Studies (OASIS). These datasets are

escribed in supplementary eMethod 4. We used the T1w MRI

vailable in each of these studies. For the detailed MRI protocols,

ne can see ( Samper-González et al., 2018 ). 

The ADNI dataset used in our experiments comprises 1455 par-

icipants for whom a T1w MR image was available at at least one

isit. Five diagnosis groups were considered: 

• CN: sessions of subjects who were diagnosed as CN at baseline

and stayed stable during the follow-up; 
• AD: sessions of subjects who were diagnosed as AD at baseline

and stayed stable during the follow-up; 
• MCI: sessions of subjects who were diagnosed as MCI, EMCI or

LMCI at baseline, who did not encounter multiple reversions

and conversions and who did not convert back to CN; 
• pMCI: sessions of subjects who were diagnosed as MCI, EMCI or

LMCI at baseline, and progressed to AD during the 36 months

following the current visit; 
• sMCI: sessions of subjects who were diagnosed as MCI, EMCI

or LMCI at baseline, and did not progress to AD during the 36

months following the current visit. 

AD and CN subjects whose label changed over time were ex-

luded. This was also the case for MCI patients with two or more

abel changes (for instance progressing to AD and then reverting

ack to MCI). We made this choice because one can assume that

he diagnosis of these subjects is less reliable. Naturally, all the ses-

ions of the pMCI and sMCI groups are included in the MCI group.

ote that the reverse is false, as some MCI subjects did not con-

ert to AD but were not followed long enough to state whether

hey were sMCI. Moreover, for 30 sessions, the preprocessing did

ot pass the quality check (QC) (see Section 4.2 ) and these im-

ges were removed from our dataset. Two pMCI subjects were en-

irely removed because the preprocessing failed for all their ses-

ions. Table 2 summarizes the demographics, and the MMSE and

lobal CDR scores of the ADNI participants. 

The AIBL dataset considered in this work is composed of 598

articipants for whom a T1w MR image and an age value was

vailable at at least one visit. The criteria used to create the diag-

osis groups are identical to the ones used for ADNI. Table 3 sum-

arizes the demographics, and the MMSE and global CDR scores of

he AIBL participants. After the preprocessing pipeline, seven ses-

ions were removed without changing the number of subjects. 
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Table 2 

Summary of participant demographics, mini-mental state examination (MMSE) and global clinical dementia rating (CDR) scores 

at baseline for ADNI. 

Subjects Sessions Age Gender MMSE CDR 

CN 330 1 830 74. 4 ± 5.8 [59.8, 89.6] 160 M / 170 F 29.1 ± 1.1 [24, 30] 0: 330 

MCI 787 3 458 73.3 ± 7.5 [54.4, 91.4] 464 M / 323 F 27.5 ± 1.8 [23, 30] 0: 2; 0.5: 785 

sMCI 298 1 046 72.3 ± 7.4 [55.0, 88.4] 175 M / 123 F 28.0 ± 1.7 [23, 30] 0.5: 298 

pMCI 295 865 73.8 ± 6.9 [55.1, 88.3] 176 M / 119 F 26.9 ± 1.7 [23, 30] 0.5: 293; 1: 2 

AD 336 1 106 75.0 ± 7.8 [55.1, 90.9] 185 M / 151 F 23.2 ± 2.1 [18, 27] 0.5: 160; 1: 175; 2: 1 

Values are presented as mean ± SD [range]. M: male, F: female 

Table 3 

Summary of participant demographics, mini-mental state examination (MMSE) and global clinical dementia rat- 

ing (CDR) scores at baseline for AIBL. 

N Age Gender MMSE CDR 

CN 429 72.5 ± 6.2 [60, 92] 183 M / 246 F 28.8 ± 1.2 [25, 30] 0: 406; 0.5: 22; 1: 1 

MCI 93 75.4 ± 6.9 [60, 96] 50 M / 43 F 27.0 ± 2.1 [20, 30] 0: 6; 0.5: 86; 1: 1 

sMCI 13 76.7 ± 6.5 [64, 87] 8 M / 5 F 28.2 ± 1.5 [26, 30] 0.5: 13 

pMCI 20 78.1 ± 6.6 [63, 91] 10 M / 10 F 26.7 ± 2.1 [22, 30] 0.5: 20 

AD 76 73.9 ± 8.0 [55, 93] 33 M / 43 F 20.6 ± 5.5 [6, 29] 0.5: 31; 1: 36; 2: 7; 3: 2 

Values are presented as mean ± SD [range]. M: male, F: female 

Table 4 

Summary of participant demographics, mini-mental state examination (MMSE) and global clinical 

dementia rating (CDR) scores for OASIS. 

N Age Gender MMSE CDR 

CN 76 76.5 ± 8.4 [62, 94] 14 M / 62 F 29.0 ± 1.2 [25, 30] 0: 76 

AD 78 75.6 ± 7.0 [62, 96] 35 M / 43 F 24.4 ± 4.3 [14, 30] 0.5: 56; 1: 20; 2: 2 

Values are presented as mean ± SD [range]. M: male, F: female 
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3 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ . 
The OASIS dataset considered in this work is composed of 193

articipants aged 62 years or more (minimum age of the partici-

ants diagnosed with AD). Table 4 summarizes the demographics,

nd the MMSE and global CDR scores of the OASIS participants.

fter the preprocessing pipeline, 22 AD and 17 CN subjects were

xcluded. 

Note that for the ADNI and AIBL datasets, three diagnosis labels

CN, MCI and AD) exist and are assigned by a physician after a

eries of clinical tests ( Ellis et al., 2010 , 2009 ; Petersen et al., 2010 )

hile for OASIS only two diagnosis labels exist, CN and AD (the

CI subjects are labelled as AD), and it is assigned based on the

DR only ( Marcus et al., 2007 ). As the diagnostic criteria of these

tudies differ, there is no strict equivalence between the labels of

DNI and AIBL, and those of OASIS. 

. Methods 

In this section, we present the main components of our frame-

ork: automatic converters of public datasets for reproducible data

anagement ( Section 4.1 ), preprocessing of MRI data (4.2), clas-

ification models (4.3), transfer learning approaches (4.4), classifi-

ation tasks (4.5), evaluation strategy (4.6) and framework imple-

entation details (4.7). 

.1. Converting datasets to a standardized data structure 

ADNI, AIBL and OASIS, as public datasets, are extremely use-

ul to the research community. However, they may be difficult to

se because the downloaded raw data do not possess a clear and

niform organization. We thus used our previously developed con-

erters ( Samper-González et al., 2018 ) (available in the open source

oftware platform Clinica) to convert the raw data into the BIDS

ormat ( Gorgolewski et al., 2016 ). Finally, we organized all the out-

uts of the experiments into a standardized structure, inspired

rom BIDS. 
.2. Preprocessing of T1w MRI 

In principle, CNNs require only minimal preprocessing because

f their ability to automatically extract low-to-high level features.

owever, in AD classification where datasets are relatively small

nd thus deep networks may be difficult to train, it remains un-

lear whether they can benefit from more extensive preprocessing.

oreover, previous studies have used varied preprocessing proce-

ures but without systematically assessing their impact. Thus, in

he current study, we compared two different image preprocessing

rocedures: a “Minimal” and a more “Extensive” procedure. Both

rocedures included bias field correction, and (optional) intensity

escaling. In addition, the “Minimal” processing included a linear

egistration while the “Extensive” included non-linear registration

nd skull-stripping. The essential MR image processing steps to

onsider in the context of AD classification are presented in online

upplementary eMethod 3. 

In brief, the “Minimal” preprocessing procedure performs the

ollowing operations. The N4ITK method ( Tustison et al., 2010 ) was

sed for bias field correction. Next, a linear (affine) registration

as performed using the SyN algorithm from ANTs ( Avants et al.,

008 ) to register each image to the MNI space (ICBM 2009c non-

inear symmetric template) ( Fonov et al., 2011 , 2009 ). To im-

rove the computational efficiency, the registered images were fur-

her cropped to remove the background. The final image size is

69 × 208 × 179 with 1 mm 

3 isotropic voxels. Intensity rescaling,

hich was performed based on the min and max values, denoted

s MinMax, was set to be optional to study its influence on the

lassification results. 

In the “Extensive” preprocessing procedure, bias field correc-

ion and non-linear registration were performed using the Unified

egmentation approach ( Ashburner and Friston, 2005 ) available in

PM12 3 . Note that we do not use the tissue probability maps but

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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only the nonlinearly registered, bias corrected, MR images. Subse-

quently, we perform skull-stripping based on a brain mask drawn

in MNI space. We chose this mask-based approach over direct

image-based skull-stripping procedures because the later did not

prove robust on our data. This mask-based approach is less accu-

rate but more robust. In addition, we performed intensity rescaling

as in the “Minimal” pipeline. 

We performed QC on the outputs of the preprocessing proce-

dures. For the “Minimal” procedure, we used a DL-based QC frame-

work 4 ( Fonov et al., 2018 ) to automatically check the quality of the

linearly registered data. This software outputs a probability indicat-

ing how accurate the registration is. We excluded the scans with

a probability lower than 0.5 and visually checked the remaining

scans whose probability were lower than 0.70. As a result, 30 ADNI

scans, 7 AIBL scans, and 39 OASIS scans were excluded. 

4.3. Classification models 

We considered four different classification approaches: i) 3D

subject-level CNN, ii) 3D ROI-based CNN, iii) 3D patch-level CNN

and iv) 2D slice-level CNN. 

In the case of DL, one challenge is to find the “optimal” model

(i.e. global minima), including the architecture hyperparameters

(e.g. number of layers, dropout, batch normalization) and the train-

ing hyperparameters (e.g. learning rate, weight decay). We first re-

viewed the architectures used in the literature among the stud-

ies in which no data leakage problem was found ( Table 1a ). As

there was no consensus, we used the following heuristic strategy

for each of the four approaches. 

For the 3D subject-level approach, we began with an overfit-

ting model that was very heavy because of the high number of FC

layers (4 convolutional blocks + 5 FC layers). Then, we iteratively

repeated the following operations: 

- the number of FC layers was decreased until accuracy on the

validation set decreased substantially; 

we added one more convolutional block. 

In this way, we explored the architecture space from 4 convolu-

tional blocks + 5 FC layers to 7 convolutional blocks + 2 FC layers.

Among the best performing architectures, we chose the shallowest

one: 5 convolutional blocks + 3 FC layers. 

As the performance was very similar for the different architec-

tures tested with the 3D subject-level approach, and as this search

method is time costly, it was not used for the 3D patch-level ap-

proach for which only four different architectures were tested: 

- - 4 convolutional blocks + 2 FC layers 

- 4 convolutional blocks + 1 FC layer 

- 7 convolutional blocks + 2 FC layers 

- 7 convolutional blocks + 1 FC layer 

The best architecture (4 convolutional blocks + 2 FC layers) was

used for both the 3D patch-level and ROI-based approaches. Note

that the other architectures were only slightly worse. 

For these 3 approaches, other architecture hyperparameters

were explored: with or without batch normalization, with or with-

out dropout. 

For the 2D slice-level approach, we chose to use a classical ar-

chitecture, the ResNet-18 with FC layers added at the end of the

network. We explored from 1 to 3 added FC layers and the best

results were obtained with one. We then explored the number of

layers to fine-tune (2 FC layers or the last residual block + 2 FC lay-

ers) and chose to fine-tune the last block and the 2 FC layers. We

always used dropout and tried different dropout rates. 
4 https://github.com/vfonov/deep-qc 
ŷ

For all four approaches, training hyperparameters (learning rate,

eight decay) were adapted for each model depending on the evo-

ution of the training accuracy. 

The list of the chosen architecture hyperparameters is given in

nline supplementary eTables 1, 2 and 3. The list of the chosen

raining hyperparameters is given in online supplementary eTables

 and 5. 

.3.1. 3D subject-level CNN 

For the 3D-subject-level approach, the proposed CNN architec-

ure is shown in Fig. 1 . The CNN consisted of 5 convolutional

locks and 3 FC layers. Each convolutional block was sequentially

ade of one convolutional layer, one batch normalization layer,

ne ReLU and one max pooling layer (more architecture details are

rovided in online supplementary e Table 1 ). 

.3.2. 3D ROI-based and 3D patch-level CNN 

For the 3D ROI-based and 3D patch-level approaches, the cho-

en CNN architecture, shown in Fig. 2 , consisted of 4 convolutional

locks (with the same structure as in the 3D subject-level) and 3

C layers (more architecture details are provided in online supple-

entary e Table 2 ). 

To extract the 3D patches, a sliding window (50 × 50 × 50 mm 

3 )

ithout overlap was used to convolve over the entire image, gen-

rating 36 patches for each image. 

For the 3D ROI-based approach, we chose the hippocampus

s a ROI, as done in previous studies. We used a cubic patch

50 × 50 × 50 mm 

3 ) enclosing the left (resp. right) hippocampus.

he center of this cubic patch was manually chosen based on the

NI template image (ICBM 2009c nonlinear symmetric template).

e ensured visually that this cubic patch included all the hip-

ocampus. 

For the 3D patch-level approach, two different training strate-

ies were considered. First, all extracted patches were fitted into a

ingle CNN (denoting this approach as 3D patch-level single-CNN).

econdly, we used one CNN for each patch, resulting in finally 36

number of patches) CNNs (denoting this approach as 3D patch-

evel multi-CNN). 

.3.3. 2D slice-level CNN 

For the 2D slice-level approach, the ResNet pre-trained on Im-

geNet was adopted and fine-tuned. The architecture is shown in

ig. 3 . The architecture details of ResNet can be found in ( He et al.,

016 ). We added one FC layer on top of the ResNet (more archi-

ecture details are provided in online supplementary e Table 3 ). The

ast five convolutional layers and the last FC layer of the ResNet, as

ell as the added FC layer, were fine-tuned. The weight and bias

f the other layers of the CNN were frozen during fine-tuning to

void overfitting. 

For each subject, each sagittal slice was extracted and replicated

nto R, G and B channels respectively, in order to generate a RGB

mage. The first and last twenty slices were excluded due to the

ack of information, which resulted in 129 RGB slices for each im-

ge. 

.3.4. Majority voting system 

For 3D patch-level, 3D ROI-based and 2D slice-level CNNs,

e adopted a soft voting system ( Raschka, 2015 ) to generate

he subject-level decision. The subject-level decision is generated

ased on the decision for each slice (resp. for each patch / for the

eft and right hippocampus ROI). More precisely, it was computed

ased on the predicted probability p obtained after softmax nor-

alization of the outputs of all the slices/patches/ROIs/CNNs from

he same patient: 

 

 = arg ma x i 

m ∑ 

j 

w j p i j 

https://github.com/vfonov/deep-qc
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Fig. 1. . Architecture of the 3D subject-level CNNs. For each convolutional block, we only display the convolutional and max pooling layers. Filters for each convolutional layer 

represent the number of filters ∗ filter size. Feature maps of each convolutional block represent the number of feature maps ∗ size of each feature map. Conv: convolutional 

layer; MaxP: max pooling layer; FC: fully connected layer. 

Fig. 2. . Architecture of the 3D ROI-based and 3D patch-level CNNs. For each convolutional block, we only display the convolutional and max pooling layers. Filters for each 

convolutional layer represent the number of filters ∗ filter size. Feature maps of each convolutional block represent the number of feature maps ∗ size of each feature map. 

Conv: convolutional layer; MaxP: max pooling layer; FC: fully connected layer. 
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here w j is the weight assigned to the j-th patch/slice/ROI/CNN.

 j reflects the importance of each slice/patch/ROI/CNN

nd is weighted by the normalized accuracy of the j-th

lice/patch/ROI/CNN. For the evaluation on the test sets, the

eights computed on the validation set were used. Note that the

redicted probability p is not calibrated and should be interpreted

ith care as it is not reflective of the true underlying probabil-

ty of the sample applied to CNNs ( Guo et al., 2017 ; Kuhn and

ohnson, 2013 ). 

For the 3D patch-level multi-CNN approach, the 36 CNNs were

rained independently. In this case, the weaker classifiers’ weight

balanced accuracy < 0.7) was set to be 0 with the consideration

hat the labels’ probabilities of these classifiers could harm the ma-

ority voting system. 

.3.5. Comparison to a linear SVM on voxel-based features 

For comparison purposes, classification was also performed

ith a linear SVM classifier. We chose the linear SVM as we previ-

usly showed that it obtained higher or at least comparable clas-

ification accuracy compared to other conventional models (logis-

ic regression and random forest) ( Samper-González et al., 2018 ).
oreover, given the very high-dimensionality of the input, a non-

inear SVM, e.g. with a radial basis function kernel, may not be

dvantageous since it would only transport the data into an even

igher dimensional space. The SVM took as input the modulated

ray matter density maps non-linearly registered to the MNI space

sing the DARTEL method ( Ashburner, 2007 ), as in our previous

tudy ( Samper-González et al., 2018 ). 

.4. Transfer learning 

Two different approaches were used for transfer learning: i) AE

re-training for 3D CNNs; and ii) ResNet pre-trained on ImageNet

or 2D CNNs. 

.4.1. AE pre-training 

The AE was constructed based on the architecture of the clas-

ification CNN. The encoder part of the AE is composed of a se-

uence of convolutional blocks, each block having one convolu-

ional layer, one batch normalization layer, one ReLU and one max

ooling layer, which is identical to the sequence of convolutional

locks composing the 3D subject-level network. The architecture of
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Fig. 3. . Architecture of the 2D slice-level CNN. An FC layer (FC2) was added on top of the ResNet. The last five convolutional layers and the last FC of ResNet (green 

dotted box) and the added FC layer (purple dotted box) were fine-tuned and the other layers were frozen during training. Filters for each convolutional layer represent the 

number of filters ∗ filter size. Feature maps of each convolutional block represent the number of feature maps ∗ size of each feature map. Conv: convolutional layer; FC: fully 

connected layer. 
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the decoder mirrored that of the encoder, except that the order of

the convolution layer and the ReLU was swapped. Of note, the pre-

training with AE and classification with CNNs in our experiments

used the same training and validation data splits in order to avoid

potential data leakage problems. Also, each AE was trained on all

available data in the training sets. For instance, all MCI, AD and CN

subjects in the training dataset were used to pre-train the AE for

the AD vs CN classification task. 

4.4.2. ImageNet pre-training 

For the 2D-slice experiments, we investigated the possibility to

transfer a ResNet pre-trained on ImageNet ( He et al., 2016 ) to our

specific tasks. Next, the fine-tuning procedure was performed on

the chosen layers (see Fig. 3 ). 

4.5. Classification tasks 

We performed two tasks in our experiments. AD vs CN was

used as the baseline task to compare the results of our different

frameworks. Then the best frameworks were selected to perform

the prediction task sMCI vs pMCI: the weights and biases of the

model learnt on the source task (AD vs CN) were transferred to

a new model fine-tuned on the target task (sMCI vs pMCI). For

the SVM, the sMCI vs pMCI experiment was performed either by

training directly on sMCI vs pMCI or by training on AD vs CN and

applying the trained model to sMCI vs pMCI. 

4.6. Evaluation strategy 

4.6.1. Validation procedure 

Rigorous validation is essential to objectively assess the perfor-

mance of a classification framework. This is particularly critical in

the case of DL as one may easily overfit the validation dataset

when manually performing model selection and hyperparameter

fine-tuning. An independent test set should be, at the very be-

ginning, generated and concealed. It should not be touched until

the CV, based on the training and validation datasets, is finished
nd the final model is chosen. This test dataset should be used

nly to assess the performance (i.e. generalization) of a fully spec-

fied and trained classifier ( Kriegeskorte et al., 2009 ; Ripley, 1996 ;

arle, 1997 ). Considering this, we chose a classical split into train-

ng/validation/test sets. Training/validation sets were used in a CV

rocedure for model selection while the test set was left un-

ouched until the end of the peer-review process. Only the best

erforming model for each approach (3D subject-level, 3D patch-

evel, 3D ROI-based, 2D slice-level), as defined by the CV on train-

ng/validation sets, was tested on the test set. 

The ADNI test dataset consisted of 100 randomly chosen age-

nd sex-matched subjects for each diagnostic class (i.e. 100 CN

ubjects, 100 AD patients). The rest of the ADNI data was used as

raining/validation set. We ensured that age and sex distributions

etween training/validation and test sets were not significantly dif-

erent. Two other test sets were composed of all subjects of OASIS

nd AIBL. The ADNI test set will be used to assess model general-

zation within the same dataset (thereby assessing that the model

as not overfitted the training/validation set). The AIBL test set will

e used to assess generalization to another dataset that has similar

nclusion criteria and image acquisition parameters to those of the

raining set. The OASIS test will be used to assess generalization

o a dataset with different inclusion criteria and image acquisition

arameters. As mentioned above, it is important to note that the

iagnosis labels are not based on the same criteria in OASIS on the

ne hand and ADNI/AIBL on the other. Thus, we do not hypothesize

hat the models trained on ADNI will generalize well to OASIS. 

The model selection procedure, including model architecture

election and training hyperparameter fine-tuning, was performed

sing only the training/validation dataset. For that purpose, a 5-

old CV was performed, which resulted in a fold (20%) of the data

or validation and the rest for training. Note that the 5-fold data

plit was performed only once for all the experiments with a fixed

eed number ( random_state = 2), thus guaranteeing that all the ex-

eriments used exactly the same subjects during CV. Also, no over-

apping exists between the MCI subjects used for AE pre-training

using all available AD, CN and MCI) and the test dataset of sMCI
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3  
s pMCI. Thus, the evaluation of the cross-task transfer learning

from AD vs CN to sMCI vs pMCI) is unbiased. Finally, for the lin-

ar SVM, the hyperparameter C controlling the amount of regu-

arization was chosen using an inner loop of 10-fold CV (thereby

erforming a nested CV). 

The validation procedure includes a series of tests. We imple-

ented tests to check the absence of data leakage in the cross-

alidation procedure. We also include functional tests of pipelines

n inseparable and fully separable data for sanity check. The in-

eparable data is made as follows. We selected a random subject

rom OASIS. We then generated multiple subjects by adding ran-

om noise to this subject. The images are different but inseparable.

ach of the generated subjects was assigned randomly to a diag-

ostic class. The fully separable data was built as follows. The first

resp. second) group of subjects is made of images in which the

oxel intensities of the left (resp. right) hemisphere were lowered.

he scripts needed to generate the synthetic datasets are provided

n the repository (see https://github.com/aramis- lab/AD- DL ). 

.6.2. Metrics 

We computed the following performance metrics: balanced ac-

uracy (BA), area under the receiver operating characteristic (ROC)

urve (AUC), accuracy, sensitivity and specificity. In the manuscript,

or the sake of concision, we report only the BA but all other

etrics are available on Zenodo under the DOI 10.5281/zen-

do.3491003. 

.7. Implementation details 

The image preprocessing procedures were implemented with

ipype ( Gorgolewski et al., 2011 ). The DL models were built us-

ng the Pytorch library 5 ( Paszke et al., 2017 ). TensorboardX 

6 was

mbedded into the current framework to dynamically monitor the

raining process. Specifically, we evaluated and reported the train-

ng and validation BA/loss after each epoch or certain iterations.

f note, instead of using only the current batch of data, the BA

as evaluated based on all the training/validation data. Moreover,

e organized the classification outputs in a hierarchical way in-

pired from BIDS, including the TSV files containing the classifica-

ion results, the outputs of TensorboardX for dynamic monitoring

f the training and the best performing models selected based on

he validation BA. The linear SVM was implemented using scikit-

earn ( Pedregosa et al., 2011 ; Samper-González et al., 2018 ). 

We applied the following early stopping strategy for all the

lassification experiments: the training procedure does not stop

ntil the validation loss is continuously higher than the lowest val-

dation loss for N epochs. Otherwise, the training continues to the

nd of the pre-defined number of epochs. The selected model was

he one which obtained the highest validation BA during training.

or the AE pre-training, the AE was trained to the end of the pre-

efined number of epochs. We then visually check the validation

oss and the quality of the reconstructed images. The mean square

oss was used for the AE pre-training and the cross-entropy loss,

hich combines a log softmax normalization and the negative log

ikelihood loss, was used for the CNNs. 

. Experiments and results 

.1. Results on training/validation set 

The different classification experiments and results (validation

A during 5-fold CV) are detailed in Table 5 . For each experiment,
5 https://pytorch.org/ 
6 https://github.com/lanpa/tensorboardX 

b  

F  

n  

g  
he training process of the best fold (with highest balanced vali-

ation accuracy) is presented as an illustration (see supplementary

Figures 1-4 for details). Lastly, the training hyperparameters (e.g.

earning rate and batch size) for each experiment are presented in

upplementary e Table 4 . 

All the pipelines (3D subject-level, 3D ROI-based, 3D patch-

evel, 2D slice-level and SVM) were tested on the synthetic insep-

rable and fully separable datasets. The results were as expected:

.5 (resp. 1.00) of balanced accuracy for the inseparable (resp. fully

eparable) dataset. 

.1.1. 3D subject-level 

Influence of intensity rescaling. We first assessed the influ-

nce of intensity rescaling. Without rescaling, the CNN did not per-

orm better than chance (BA = 0.50) and there was an obvious gen-

ralization gap (high training but low validation BA). With inten-

ity rescaling, the BA improved to 0.80. Based on these results, in-

ensity rescaling was used in all subsequent experiments. 

Influence of transfer learning (AE pre-training). The perfor-

ance was slightly higher with AE pre-training (0.82) than with-

ut (0.80). Based on this, we decided to always use AE pre-training,

ven though the difference is small. 

Influence of the training dataset size. We then assessed the

nfluence of the amount of training data, comparing training us-

ng only baseline data to those with longitudinal data. The perfor-

ance was moderately higher with longitudinal data (0.85) com-

ared to baseline data only (0.82). We choose to continue ex-

loring the influence of this choice because the four different ap-

roaches have a very different number of learnt parameters and

he sample size is intrinsically augmented in 2D slice-level and 3D

ingle-CNN patch-level approaches. 

Influence of preprocessing. We then assessed the influence of

he preprocessing comparing the “Extensive” and “Minimal” pre-

rocessing procedures. The performance was almost equivalent

ith the “Minimal” preprocessing (0.85) and with the “Extensive”

reprocessing (0.86). Hence in the following experiments we kept

he “Minimal” preprocessing. 

Classification of sMCI vs pMCI. The BA was the same for base-

ine data and for longitudinal data (0.73). 

.1.2. 3D ROI-based 

For AD vs CN, the BA was 0.88 for baseline data and 0.86 for

ongitudinal data. This is slightly higher than that of the subject-

evel approach. For sMCI vs pMCI, the BA was 0.77 for baseline

ata and 0.78 for longitudinal data. This is substantially higher

han with the 3D-subject level approach. 

.1.3. 3D patch-level 

Single CNN. For AD vs CN, the BA was 0.74 for baseline data

nd 0.76 for longitudinal data. 

Multi CNN. For AD vs CN, the BA was 0.81for baseline data and

.83for longitudinal data, thereby outperforming the single CNN

pproach. For sMCI vs pMCI, the BA was 0.75 for baseline data

nd 0.77 for longitudinal data. The performance for both tasks is

lightly lower than that of the 3D ROI-based approach. Compared

o the 3D subject-level approach, this method works better for

MCI vs pMCI. 

.1.4. 2D slice-level 

In general, the performance of the 2D-slice level approach was

ower to that of the 3D ROI-based, 3D patch-level multi CNN and

D subject-level (when trained with longitudinal data) approaches

ut higher than that of the 3D patch-level single CNN approach.

or 2D slice-level, the use of longitudinal data for training did

ot improve the performance (0.79 for baseline data; 0.74 for lon-

itudinal data). Finally, we studied the influence of data leakage

https://github.com/aramis-lab/AD-DL
https://pytorch.org/
https://github.com/lanpa/tensorboardX
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Table 5. 

Summary of all the classification experiments and validation results in our analyses. For each model, we report the balanced accuracy for each of the five folds within 

brackets and the average and standard deviation across the folds. Note that this is not the standard-deviation of the estimator of balanced accuracy. MinMax: for CNNs, 

intensity rescaling was done based on min and max values, resulting all values to be in the range of [0, 1]; SPM-based: the SPM-based gray matter maps are intrinsically 

rescaled; AE: autoencoder. For DL models, sMCI vs pMCI tasks were done with as follows: the weights and biases of the model learnt on the source task (AD vs CN) were 

transferred to a new model fine-tuned on the target task (sMCI vs pMCI). For SVM, the sMCI vs pMCI was done either training directly on sMCI vs pMCI or using training 

on AD vs CN and applying the trained model to sMCI vs pMCI. 

Classification 

architectures 

Training data Image 

preprocessing 

Intensity 

rescaling 

Data split Training 

approach 

Transfer 

learning 

Task Validation balanced 

accuracy 

Exp # 

3D subject-level 

CNN 

Baseline Minimal None subject-level single-CNN None AD vs CN 0.50 ± 0.00 [0.50, 0.50, 

0.50, 0.50, 0.50] 

1 

MinMax 0.80 ± 0.05 [0.76, 0.86, 

0.81, 0.85, 0.74] 

2 

AE pre-training 0.82 ± 0.05 [0.74, 0.90, 

0.83, 0.77, 0.83] 

3 

Longitudinal Minimal MinMax subject-level single-CNN AE pre-training 0.85 ± 0.04 [0.88, 0.88, 

0.84, 0.85, 0.78] 

4 

Extensive 0.86 ± 0.06 [0.88, 0.94, 

0.85, 0.85, 0.76] 

5 

Minimal sMCI vs pMCI 0.73 ± 0.03 [0.73, 0.73, 

0.67, 0.76, 0.74] 

6 

Baseline 0.73 ± 0.05 [0.73, 0.73, 

0.63, 0.77, 0.76] 

7 

3D ROI-based CNN Baseline Minimal MinMax subject-level single-CNN AE pre-training AD vs CN 0.88 ± 0.03 [0.84, 0.89, 

0.90, 0.89, 0.85] 

8 

sMCI vs pMCI 0.77 ± 0.05[0.81, 0.81, 

0.67, 0.78, 0.76] 

9 

Longitudinal AD vs CN 0.86 ± 0.02 [0.83, 0.86, 

0.86, 0.88, 0.86] 

10 

sMCI vs pMCI 0.78 ± 0.07 [0.87, 0.73, 

0.68, 0.82, 0.78] 

11 

3D patch-level CNN Baseline Minimal MinMax subject-level single-CNN AE pre-training AD vs CN 0.74 ± 0.08 [0.75, 0.84, 

0.78, 0.75, 0.59] 

12 

Longitudinal 0.76 ± 0.04 [0.78, 0.77, 

0.80, 0.78, 0.69] 

13 

Baseline multi-CNN AD vs CN 0.81 ± 0.03 [0.82, 0.84, 

0.83, 0.77, 0.79] 

14 

sMCI vs pMCI 0.75 ± 0.04[0.80, 0.72, 

0.72, 0.79, 0.72] 

15 

Longitudinal AD vs CN 0.83 ± 0.02 [0.83, 0.85, 

0.84, 0.82, 0.79] 

16 

sMCI vs pMCI 0.77 ± 0.04 [0.77, 0.75, 

0.71, 0.82, 0.79] 

17 

2D slice-level CNN Baseline Minimal MinMax subject-level single-CNN ImageNet 

pre-training 

AD vs CN 0.79 ± 0.04 [0.83, 0.83, 

0.72, 0.82, 0.73] 

18 

Longitudinal 0.74 ± 0.03 [0.76, 0.80, 

0.74, 0.71, 0.69] 

19 

Baseline slice-level(data 

leakage) 

1.00 ± 0 [1.00, 1.00, 1.00, 

1.00, 1.00] 

20 

SVM Baseline DartelGM SPM-based subject-level None None AD vs CN 0.88 ± 0.02 [0.92, 0.89, 

0.85, 0.89, 0.84] 

21 

sMCI vs pMCI (trained 

on sMCI vs pMCI) 

0.68 ± 0.02 [0.71, 0.68, 

0.66, 0.67, 0.71] 

22 

sMCI vs pMCI (trained 

on AD vs CN) 

0.70 ± 0.06 [0.66, 0.75, 

0.70, 0.79, 0.63] 

23 

Longitudinal None AD vs CN 0.87 ± 0.01 [0.86, 0.86, 

0.88, 0.87, 0.85] 

24 

sMCI vs pMCI (trained 

on sMCI vs pMCI) 

0.68 ± 0.06 [0.75, 0.77, 

0.62, 0.62, 0.67] 

25 

sMCI vs pMCI (trained 

on AD vs CN) 

0.70 ± 0.02 [0.68, 0.72, 

0.67, 0.69, 0.73] 

26 
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using a slice-level data split strategy. As expected, the BA was

1.00. 

5.1.5. Linear SVM 

For task AD vs CN, the balanced accuracies were 0.88 when

trained with baseline data and 0.87 when trained with longitudi-

nal data. For task sMCI vs pMCI, when training from scratch, the

balanced accuracies were 0.68 when trained with baseline data

and 0.68 when trained with longitudinal data. When using transfer

learning from the task AD vs CN to the task sMCI vs pMCI, the bal-

anced accuracies were 0.70 (when trained with baseline data) and

0.70 (when trained with longitudinal data). The performance of the

SVM on AD vs CN is thus higher than that of most DL models and

comparable to the best ones. Whereas for task sMCI vs pMCI, the

BA of the SVM is lower than that of DL models. 

5.2. Results on the test sets 

Results on the three test sets (ADNI, OASIS and AIBL) are pre-

sented in Table 6 . For each category of approach, we only applied

the best models for both baseline and longitudinal data. 
.2.1. 3D subject-level 

For AD vs CN, all models generalized well to the ADNI and AIBL

est sets but not to the OASIS test set (losing over 0.15 points of

A). 

For sMCI vs pMCI, the models generalized relatively well to the

DNI test set but not to the AIBL test set (losing over 0.20 points).

ote that the generalization was better for longitudinal than for

aseline. 

.2.2. 3D ROI-based 

For AD vs CN, the models generalized well to the ADNI test set,

lightly worse to the AIBL test set (losing 0.04 to 0.05 points) and

onsiderably worse for OASIS (losing from 0.13 to 0.19 points). 

For sMCI vs pMCI, there was a slight decrease in BA on the

DNI test set and a severe decrease for the AIBL test set. Note that

n the ADNI test set, the performance of the 3D ROI-based is al-

ost the same as that of the 3D-subject (when using longitudinal

ata) while it was better on the validation set. 

.2.3. 3D patch-level 

For AD vs CN, the generalization pattern was similar to that of

he other models: good for ADNI and AIBL, poor for OASIS. 
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Table 6. 

Summary of the results of the three test datasets in our analyses. 3D subject-level CNNs were trained using intensity rescaling and our “Minimal” preprocessing, with a data split on the subject level and transfer learning 

(AE pretraining for AD vs CN tasks and cross-task transfer learning was applied for sMCI vs pMCI tasks). For each model, we first copied the validation balanced accuracy (averaged across the five folds) that is reported in 

Table 5 . Then, we report the balanced accuracy for each test set (ADNI, AIBL, OASIS), more specifically within brackets we report the balanced accuracy for each of the trained models of the 5 folds of the validation set and then 

the average across the five folds. MinMax: for CNNs, intensity rescaling was done based on min and max values, resulting all values to be in the range of [0, 1]; SPM-based: the SPM-based gray matter maps are intrinsically 

rescaled; AE: autoencoder. 

Classification 

architectures 

Training data Image preprocessing Intensity rescaling Data split Training approach Transfer learning Task Validation balanced 

accuracy 

ADNI test balanced 

accuracy 

AIBL test balanced 

accuracy 

OASIS test balanced 

accuracy 

3D subject-level 

CNN 

Baseline Minimal MinMax subject-level single-CNN AE pre-training AD vs CN 0.82 ± 0.05 0.82 [0.79, 0.85, 

0.82, 0.81, 0.85] 

0.83 [0.81, 0.85, 

0.84, 0.78, 0.86] 

0.67 [0.59, 0.69, 

0.72, 0.64, 0.69] 

Longitudinal 0.85 ± 0.04 0.85 [0.88, 0.84, 

0.84, 0.84, 0.84] 

0.86 [0.89, 0.85, 

0.86, 0.85, 0.86] 

0.68 [0.65, 0.70, 

0.70, 0.71, 0.65] 

Baseline sMCI vs pMCI 0.73 ± 0.05 0.69 [0.68, 0.71, 

0.64, 0.73, 0.67] 

0.52 [0.51, 0.47, 

0.55, 0.54, 0.55] 

–

Longitudinal 0.73 ± 0.03 0.73 [0.75, 0.72, 

0.72, 0.74, 0.72] 

0.50 [0.48, 0.47, 

0.54, 0.52, 0.51] 

–

3D ROI-based CNN Baseline Minimal MinMax subject-level single-CNN AE pre-training AD vs CN 0.88 ± 0.03 0.89 [0.87, 0.88, 

0.90, 0.91, 0.89] 

0.84 [0.83, 0.88, 

0.84, 0.85, 0.83] 

0.69 [0.62, 0.74, 

0.70, 0.69, 0.71] 

sMCI vs pMCI 0.7 ± 0.05 0.74 [0.75, 0.72, 

0.76, 0.75, 0.75] 

0.60 [0.56, 0.56, 

0.66, 0.62, 0.59] 

–

Longitudinal AD vs CN 0.86 ± 0.02 0.85 [0.87, 0.82, 

0.87, 0.86, 0.87] 

0.81 [0.79, 0.81, 

0.79, 0.82, 0.85] 

0.73 [0.71, 0.73, 

0.72, 0.76, 0.71] 

sMCI vs pMCI 0.78 ± 0.07 0.74 [0.70, 0.73, 

0.73, 0.75, 0.81] 

0.57 [0.56, 0.53, 

0.52, 0.66, 0.56] 

–

3D patch-level CNN Baseline Minimal MinMax subject-level multi-CNN AE pre-training AD vs CN 0.81 ± 0.03 0.81 [0.82, 0.81, 

0.84, 0.80, 0.79] 

0.81 [0.81, 0.75, 

0.81, 0.84, 0.82] 

0.64 [0.61, 0.65, 

0.60, 0.69, 0.67] 

sMCI vs pMCI 0.75 ± 0.04 0.70 [0.71, 0.66, 

0.66, 0.71, 0.75] 

0.64 [0.63, 0.52, 

0.67, 0.74, 0.63] 

–

Longitudinal AD vs CN 0.83 ± 0.02 0.86 [0.86, 0.86, 

0.87, 0.85, 0.84] 

0.80 [0.82, 0.78, 

0.81, 0.81, 0.79] 

0.71 [0.70, 0.70, 

0.71, 0.71, 0.67] 

sMCI vs pMCI 0.77 ± 0.04 0.70 [0.70, 0.71, 

0.69, 0.71, 0.69] 

0.44 [0.45, 0.39, 

0.55, 0.42, 0.39] 

–

2D slice-level CNN Baseline Minimal MinMax subject-level single-CNN ImageNet pre-train AD vs CN 0.79 ± 0.04 0.76 [0.76, 0.75, 

0.77, 0.75, 0.78] 

0.76 [0.74, 0.76, 

0.78, 0.75, 0.75] 

0.65 [0.67, 0.62, 

0.64, 0.65, 0.69] 

Longitudinal 0.74 ± 0.03 0.74 [0.81, 0.76, 

0.70, 0.74, 0.72] 

0.73 [0.72, 0.77, 

0.72, 0.66, 0.79] 

0.61 [0.62, 0.63, 

0.64, 0.58, 0.60] 

Baseline slice-level (data 

leakage) 

1.00 ± 0 0.75 [0.74, 0.76, 

0.75, 0.76, 0.75] 

0.80 [0.80, 0.79, 

0.82, 0.80, 0.81] 

0.68 [0.68, 0.67, 

0.69, 0.70, 0.66] 

SVM Baseline DartelGM SPM-based subject-level None None AD vs CN 0.88 ± 0.02 0.88 [0.88, 0.87, 

0.90, 0.90, 0.88] 

0.88 [0.87, 0.90, 

0.87, 0.89, 0.90] 

0.70 [0.71, 0.71, 

0.70, 0.68, 0.72] 

sMCI vs pMCI 

(trained on AD vs 

CN) 

0.70 ± 0.06 0.75 [0.75, 0.75, 

0.74, 0.76, 0.76] 

0.60 [0.62, 0.54, 

0.62, 0.59, 0.64] 

–

Longitudinal AD vs CN 0.87 ± 0.01 0.87 [0.85, 0.84, 

0.90, 0.89, 0.87] 

0.87 [0.88, 0.86, 

0.88, 0.87, 0.89] 

0.71 [0.73, 0.68, 

0.72, 0.70, 0.71] 

sMCI vs pMCI 

(trained on AD vs 

CN) 

0.70 ± 0.02 0.76 [0.74, 0.75, 

0.80, 0.77, 0.76] 

0.68 [0.67, 0.66, 

0.68, 0.67, 0.71] 

–
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7 https://nilearn.github.io/ . 
8 http://github.com/raamana/neuropredict . 
For sMCI vs pMCI, the BA on the ADNI test set was 0.05 to 0.07

points lower than on the ADNI validation set. The BA on the AIBL

test set was very poor. 

5.2.4. 2D slice-level 

For AD vs CN, there was a slight decrease in performance on

the ADNI test set (losing from 0 to 0.03 points) and the AIBL test

set (losing from 0.01 to 0.03 points) and a considerable decrease

on the OASIS test set (losing from 0.13 to 0.14 points). As expected,

the “data-leakage” model did not generalize well. 

5.2.5. Linear SVM 

For AD vs CN, we observed the same pattern as for the other

models: excellent generalization to ADNI and AIBL but not to OA-

SIS. 

For sMCI vs pMCI, the generalization was excellent for ADNI but

not for AIBL. Of note, the BA on the ADNI test set was even higher

to that of the validation, reaching a level which is comparable to

the best DL models. 

6. Discussion 

The present study contains three main contributions. First, we

performed a systematic and critical literature review, which high-

lighted several important problems. Then, we proposed an open-

source framework for the reproducible evaluation of AD classifica-

tion using CNNs and T1w MRI. Finally, we applied the framework

to rigorously compare different CNN approaches and to study the

impact of key components on the performance. We hope that the

present paper will provide a more objective assessment of the per-

formance of CNNs for AD classification and constitute a solid base-

line for future research. 

This paper first proposes a survey of existing CNN methods for

AD classification that highlighted several serious problems with

the existing literature. We found that data leakage was potentially

present in half of the 32 surveyed studies. This problem was ev-

ident in six of them and possible (due to inadequate description

of the validation procedure) in ten others. This is a very serious

issue, in particular considering that all these studies have under-

gone peer-review, likely to bias the performance upwards. We con-

firmed this assumption by simulating data leakage and found that

it led to a biased evaluation of the BA (1.00 on the validation in-

stead of 0.75 on ADNI test set and 0.80 on AIBL test set). Similar

findings were observed in ( Bäckström et al., 2018 ). Moreover, the

survey highlighted that many studies did not motivate the choice

of their architecture or training hyperparameters. Only two of them

( Wang et al., 2019 ; Wang et al., 2018a ) explored and gave results

obtained with different architecture hyperparameters. However, it

is possible that these results were computed on the test set to

help choose their final model, hence they may be contaminated by

data leakage. For other studies, it is also likely that multiple combi-

nations of architecture and training hyperparameters were tested,

leading to a biased performance on the test set. We believe that

these issues may potentially be caused by the lack of expertise

in medical imaging or DL. For instance, splitting at the slice-level

comes from a lack of knowledge of the nature of medical imaging

data. We hope that the present paper will help to spread knowl-

edge and good practices in the field. 

The second contribution of our work is an open-source frame-

work for reproducible experiments on AD classification using

CNNs. Some studies in our bibliography made their code available

on open source platforms ( Hon and Khan, 2017 ; Hosseini-Asl et al.,

2016 ; Korolev et al., 2017 ; Liu et al., 2018a ). Even though this prac-

tice should be encouraged, it does not guarantee reproducibility of

the results. Two studies ( Cheng and Liu, 2017 ; Liu et al., 2018a )

used the online code of ( Hosseini-Asl et al., 2016 ) for comparison
ith their framework, but neither of them succeeded in reproduc-

ng the results of the original study (for the AD vs CN task they

eport both an accuracy of 0.82 while the original study reports

n accuracy of 0.99). We extended our open-source framework

or reproducible evaluation of AD classification, initially dedicated

o traditional methods ( Samper-González et al., 2018 ; Wen et al.,

018a ), to DL approaches. It is composed of the previously devel-

ped tools for data management that rely on the BIDS commu-

ity standard ( Gorgolewski et al., 2016 ), a new image preprocess-

ng pipeline performing bias field correction, affine registration to

NI space and intensity rescaling, a set of CNN models that are

epresentative of the literature, and rigorous validation procedures

edicated to DL. We hope that this open-source framework will fa-

ilitate the reproducibility and objectivity of DL methods for AD

lassification as it enables researchers to easily embed new im-

ge preprocessing pipelines or CNN architectures and study their

dded value. It extends the effort s initiated in both the neuroimag-

ng ( Gorgolewski and Poldrack, 2016 ; Poldrack et al., 2017 ) and ML

 Sonnenburg et al., 2007 ; Stodden et al., 2014 ; Vanschoren et al.,

014 ) communities to improve reproducibility. In particular, frame-

orks and software tools have been recently proposed to facilitate

nd standardize ML analyses for neuroimaging data. Nilearn 

7 is

urrently mostly focused on fMRI data. It provides pipelines for im-

ge processing, various techniques for decoding activity and study-

ng functional connectivity as well as visualization tools. Neuropre-

ict 8 ( Raamana, 2017 ) is more focused on computer-aided diagno-

is and other clinical applications. In particular, it provides stan-

ardized cross-validation procedures and tools to visualize results. 

Our third contribution is the rigorous assessment of the per-

ormance of different CNN architectures. The proposed framework

as applied to images from three public datasets, ADNI, AIBL and

ASIS. On the ADNI test dataset, the diagnostic BA of CNNs ranged

rom 0.76 to 0.89 for the AD vs CN task and from 0.69 to 0.74 for

he sMCI vs pMCI task. These results are in line with the state-of-

he-art (studies without data leakage in Table 1a ), where classifica-

ion accuracy typically ranged from 0.76 to 0.91 for AD vs CN and

.62 to 0.83 for sMCI vs pMCI. Nevertheless, the performance that

e report is lower than that of the top-performing studies. This

otentially comes from the fact that our test set was fully inde-

endent and was never used to choose the architectures or param-

ters. The proposed framework can be used to provide a baseline

erformance when developing new methods. 

Different approaches, namely 3D subject-level, 3D ROI-based,

D patch-level and 2D slice-level CNNs, were compared. Our study

s the first one to systematically compare the performance of these

our approaches. In the literature, three studies ( Cheng et al., 2017 ;

i et al., 2018 ; Liu et al., 2018a ) using a 3D patch-level approach

ompared their results with a 3D subject-level approach. In all

tudies, the 3D patch-level multi-CNN gave better results than the

D-subject CNN (3 or 4 percent points of difference between the

wo approaches). However, except for ( Liu et al., 2018a ) where the

ode provided by ( Hosseini-Asl et al., 2016 ) is reused, the meth-

ds used for the comparison are poorly described and the studies

ould thus be difficult, if not impossible, to reproduce. In gen-

ral, in our results, three approaches (3D subject-level, 3D ROI-

ased, 3D patch-level) provided approximately the same level of

erformance (note that this discussion paragraph is based on test

et results which are the most objective performance measures).

n the other hand, the 2D-slice approach was less efficient. One

an hypothesize that this is because the spatial information is

ot adequately modeled by these approaches (no 3D consistency

cross slices). Only one paper (without data leakage) has explored

https://nilearn.github.io/
http://github.com/raamana/neuropredict
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D slice-level using ImageNet pre-trained ResNet ( Valliani and

oni, 2017 ). Their accuracy is very similar to ours (0.81 for task

D vs CN). The results of the three 3D approaches were in gen-

ral comparable and our results do not allow a strong conclusion

o be drawn on the superiority of one of these three approaches.

evertheless, there is a trend for a slightly lower performance of

he 3D patch-level approach. It could come from the fact that the

patial information is also not ideally modeled with the 3D patch

no consistency at the border of the patch). Other studies with

D patch-level approaches in the literature ( Cheng et al., 2017 ;

ian et al., 2018 ; Li et al., 2018 ; Liu et al., 2018a , 2018e ) reported

igher accuracies (from 0.87 to 0.91) than ours (from 0.81 to 0.86).

e hypothesize that it may come from the increased complexity

f their approach, including patch selection and fusion. Concern-

ng the 3D ROI-based approach, two papers in the literature using

ippocampal ROI reported high accuracies for task AD vs CN (0.84

nd 0.90), comparable to ours, even though their definition of the

OI was different ( Aderghal et al., 2018 , 2017b ). As for the 3D sub-

ects ( Bäckström et al., 2018 ; Cheng and Liu, 2017 ; Korolev et al.,

017 ; Li et al., 2017 ; Senanayake et al., 2018 ; Shmulev et al., 2018 ),

esults of the literature varied across papers, from 0.76 to 0.90. Al-

hough we cannot prove it directly, we believe that this variabil-

ty stems from the high risk of overfitting. To summarize, our re-

ults demonstrate the superiority of 3D approaches compared to

D, but the results of the different 3D approaches were not sub-

tantially different. In light of this, one could prefer using the 3D

OI-based method which requires less memory and training time

compared to other 3D methods) and is conceptually simpler than

he 3D-patch multi-CNN approach. However, it could be that fu-

ure works, with larger training sets, result in the superiority of ap-

roaches that exploit all the information in the 3D image and not

nly that of the hippocampus. Indeed, even though the hippocam-

us is affected early and severely by AD ( Braak and Braak, 1998 ),

lterations in AD are not confined to the hippocampus and extend

o other regions in the temporal, parietal and frontal lobes. 

One interesting question is whether DL could perform bet-

er than conventional ML methods for AD classification. Here, we

hose to compare CNN to a linear SVM. SVM has been used in

any AD classification studies and obtained competitive balanced

ccuracies ( Falahati et al., 2014 ; Haller et al., 2011 ; Rathore et al.,

017 ). In the current study, the SVM was at least as good as the

est CNNs for both the AD vs CN and the sMCI vs pMCI task. Note

hat we used a standard linear SVM with standard voxel-based fea-

ures. It could be that more sophisticated conventional ML meth-

ds could provide even higher performance. Similarly, we do not

laim that more sophisticated DL architectures would not outper-

orm the SVM. However, this is not the case with the architectures

hat we tested, which are representative of the existing literature

n AD classification. Besides, it is possible that CNNs will outper-

orm SVM when larger public datasets will become available. Over-

ll, a major result of the present paper is that, with the sample

ize which is available in ADNI, CNNs did not provide an increase

n performance compared to SVM. 

Unbiased evaluation of the performance is an essential task in

L. This is particularly critical for DL because of the extreme flex-

bility of the models and of the numerous architecture and train-

ng hyperparameters that can be chosen. In particular, it is cru-

ial that such choices are not made using the test set. We chose

 very strict validation strategy in that respect: the test sets were

eft untouched until the end of the peer-review process. This guar-

ntees that only the final models, after all possible adjustments,

re carried to the test set. Moreover, it is important to assess gen-

ralization not only to unseen subjects but also to other studies in

hich image acquisitions or patient inclusion criteria can vary. In

he present paper, we used three test sets from the ADNI, AIBL and

ASIS databases to assess different generalization aspects. 
We studied generalization in three different settings: i) on a

eparate test set from ADNI, thus from the same study as those

f the training set; ii) on AIBL, i.e. a different study but with sim-

lar inclusion criteria and imaging acquisitions; iii) on OASIS, i.e.

 study with different inclusion criteria and imaging acquisitions.

verall, the models generalized well to ADNI (for both tasks) and

o AIBL (for AD vs CN). On the other hand, we obtained a very

oor generalization to sMCI vs pMCI for AIBL. We hypothesize that

t could be because pMCI and sMCI participants from AIBL are sub-

tantially older than those of ADNI, which is not the case for AD

nd CN participants. Nevertheless, note that the sample size for

MCI vs pMCI in AIBL is quite small (33 participants). Also, the

eneralization to OASIS was poor. This may stem from the diagno-

is criteria which are less rigorous (in OASIS, all participants with

DR > 0 are considered AD). Overall, these results bring important

nformation. First, good generalization to unseen, similar, subjects

emonstrate that the models did not overfit the subjects at hand

n the training/validation set. On the other hand, poor generaliza-

ion to different age ranges, protocols and inclusion criteria show

hat trained models are too specific of these characteristics. Gen-

ralization across different populations thus remains an unsolved

roblem and will require training on more representative datasets

ut maybe also new strategies to make training more robust to

eterogeneity. This is critical for the future translation to clinical

ractice in which conditions are much less controlled than in re-

earch datasets like ADNI. 

We studied the influence of several key choices on the per-

ormance. First, we studied the influence of AE pre-training and

howed that it slightly improved the average over training from

cratch. Three previous papers studied the impact of AE pre-

raining ( Hosseini-Asl et al., 2016 ; Vu et al., 2018 , 2017 ) and found

hat it improved the results. However, they are all suspected of

ata leakage. We thus conclude that, to date, it is not proven

hat AE pre-training leads to a significant increase in BA. A diffi-

ulty in AD classification using DL is the limited amount of data

amples available for training. However, training with longitudi-

al instead of baseline data gave only a slight increase of BA in

ost approaches. The absence of a major improvement may be

ue to several factors. First, training with longitudinal data implies

raining with data from more advanced disease stages, since pa-

ients are seen at a later point in the disease course. This may

ave an adverse effect on the performance of the model when

ested on baseline data, at which the patients are less advanced.

lso, since the additional data come from the same patients, this

oes not provide a better coverage of inter-individual variability.

e studied the impact of image preprocessing. First, as expected,

e found that CNNs cannot be successfully trained without in-

ensity rescaling. We then studied the influence of two different

reprocessing procedures (“Minimal” and “Extensive”). The “Min- 

mal” procedure is limited to an affine registration of the sub-

ect’s image to a standard space, while for the “Extensive” pro-

edure non-linear registration and skull stripping are performed.

hey led to comparable results. In principle, this is not surprising

s DL methods do not require extensive preprocessing. In the litter-

ture, varied types of preprocessing have been used. Some studies

sed non-linear registration ( Bäckström et al., 2018 ; Basaia et al.,

019 ; Lian et al., 2018 ; Lin et al., 2018 ; Liu et al., 2018a , 2018e ;

ang et al., 2019 ; Wang et al., 2018a ) while others used only lin-

ar ( Aderghal et al., 2018 , 2017a , 2017b ; Hosseini Asl et al., 2018 ;

i et al., 2018 ; Liu et al., 2018a ; Shmulev et al., 2018 ) or no reg-

stration ( Cheng and Liu, 2017 ). None of them compared these

ifferent preprocessings with the exception of ( Bäckström et al.,

018 ) which compared preprocessing using FreeSurfer to no pre-

rocessing. They found that training the network with the raw data

esulted in a lower classification performance (drop in accuracy

f 38 percent points) compared to the preprocessed data using
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FreeSurfer ( Bäckström et al., 2018 ). However, FreeSurfer comprises

a complex pipeline with many preprocessing steps so it is unclear,

from their results, which part drives the superior performance. We

clearly demonstrated that the intensity rescaling is essential for the

CNN training whereas there is no improvement in using a non-

linear registration over a linear one. Finally, we found that, for the

3D-patch level framework, the multi-CNN approach gave better re-

sults than the single-CNN one. However, this may be mainly be-

cause the multi-CNN approach benefits from a thresholding system

which excludes the worst patches, a system that was not present

in the single-CNN approach. To test this hypothesis, we performed

supplementary experiments in which the multi-CNN was trained

without threshold and the single-CNN was trained using the same

thresholding system as in the main experiments of the multi-CNN.

Results are reported in eTables 6 and 7. We observed that the re-

sults of the multi-CNN and the single-CNN are comparable when

they use the same thresholding system. For example, for the AD vs

CN task, without thresholding, the BA of the multi-CNN was 0.76

using baseline data and 0.72 using longitudinal data while that of

the single-CNN were respectively 0.74 and 0.76. A similar obser-

vation can be made when both approaches used the thresholding.

These supplementary experiments suggest that, under similar con-

ditions, the multi-CNN architecture does not always perform bet-

ter than the single-CNN architecture. In light of this, it would seem

preferable to choose a framework that offers a better compromise

between performance and conceptual complexity, e.g. the 3D-ROI

or the 3D-subject approaches. 

Our study has the following limitations. First, a large number

of options exist when choosing the model architecture and train-

ing hyperparameters. Even though we did our best to make mean-

ingful choices and test a relatively large number of possibilities,

we cannot exclude that other choices could have led to better re-

sults. To overcome this limitation, our framework is freely avail-

able to the community. Researchers can use it to propose and vali-

date potentially better performing models. In particular, with our

proposed framework, researchers can easily try their own mod-

els without touching the test datasets. Secondly, the CV procedures

were performed only once. Of course, the training is not determin-

istic, and one would ideally want to repeat the CV to get a more

robust estimate of the performance. However, we did not perform

this due to limited computational resources. Finally, overfitting al-

ways exists in our experiments, even though different techniques

have been tried (e.g. transfer learning, dropout or weight decay).

This phenomenon occurs mainly due to the limited size of the

datasets available for AD classification. It is likely that training with

much larger datasets would result in higher performance. 
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